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This is an analysis of the statistical nature of the time-independent Schr6dinger equation 
through the use of the information entropy concept. We first study the Schr6dinger equation in 
a general way and then by actually computing entropies of various states of the hydrogen 
atom for a re-examination of the problem. It is found that there exists a variational procedure 
involving maximizing entropy for obtaining all solutions once one solution is known. Based on 
certain observations of the particular single system, some general conclusions can be deduced. 
First of all, we can safely say that the Schr6dinger equation, among many other interpreta- 
tions, is but the consequence of a principle of minimum potential energy expectation with 
certain proper constraints imposed. In addition, the ensemble concept in statistical thermody- 
namics is also useful in understanding microscopic quantum systems and many quantum 
mechanical concepts such as energy quantization and wave nodal properties can be discussed in 
the light of information theory and statistics in general. 

1. I n t r o d u c t i o n  

Probably one of the most fascinating concepts in science is the one called 
entropy. In 1948, besides its importance in thermodynamics,  Shannon and Wiener 
[1,2] recognized the statistical implication of  entropy to any set of  positive num- 
bers and found applications in the field of  communicat ion engineering. Since then 
physical scientists have re-examined such a mathematical  nature and developed a 
new field known as information theory [3,4]. In particular, Jaynes used this idea to 
provide a method for constructing the whole of  statistical mechanics [5]. Actually, 
the versatility of  this concept even enables its applications to be found in every field 
of  both  physical and social sciences as well [6]. Now, a density function in quantum 
mechanics can be regarded as a continuous set of  positive numbers. This natural ly 
renders room for information theory to play a part. In fact, during the last 
decade, development along this line has been remarkable. Most  importantly,  
Bialynicki-Birula [7,8] discovered an interesting uncertainty relation, 

© J.C. Baltzer AG, Science Publishers 



126 J.- C. Chen et al. / Information analysis o f  the H atom 

Sp(N) + S.~(N)>~ 3N(1 + In 7r)-  2N lnN 

= N ( 6 . 4 3 -  2 In N) .  (1) 

Here, Sp(N) and ST(N) are the information entropies in position and momentum 
spaces, respectively.: 

= - I p(r) In p(r) dr,  (2) Sp(N) 

= - I "/(P) In 7 (P)dp ,  (3) ST(N) 

where N is the number of electrons. Later, Gadre then computed information 
entropies for Thomas-Fermi atoms and other atomic systems ranging from H 
to Xe [9-12]. Of even more importance to the present work are the works of Sears 
et al. [13] and of Frieden [14,15]. The former authors noticed a close relation 
between the quantum-mechanical kinetic energy expectation and the Fisher's 
information measure. They then concluded that the SchrSdinger equation formula- 
tion may be viewed as a variation principle of minimal Fisher information under 
other constraints. Frieden later observed that the Fisher information is also the 
reciprocal of the Cramer-Rao bound, a criterion of noninformativeness in the pro- 
blem of estimating a probability law p(x). He then showed explicitly a way of 
obtaining the SchrSdinger equation involving a principle of maximum Cramer-  
Rao bound. 

As pointed out by Frieden, on the other hand, one of the useful properties of 
the maximum entropy approach is its immediate solution. However, for attacking 
quantum problems, some other constraints are to be found if one insists on using 
such an approach. Such attempts are known. Gadre and Bendale [11] suggested to 
maximize the sum of entropies Sp and $7 and studied the possibility of incorporat- 
ing various constraints such as the Q~)  value and Kato's cusp condition 

(dp/dr)r=o = -2Zp(0) .  (4) 

The maximum entropy method was also used for obtaining the Compton profile 
I(p) by Gadre and Sears [16], and by Koga and Morita [17]. Use was also found in 
constructing approximate quantum wave functions [18,19], as reported by many 
other authors. 

Here, we intend to explore more about the implications of information theory 
to the SchrSdinger equation. Putting any solution in the form of an exponential 
function, we find that the quantum expectation of the exponent is proportional to 
the quantum entropy of the system. We show this in section 2. In section 3, we 
report our computational results on the H atom, the H~- ion, and H2. In section 4, 
we re-examine the H atom problem through the maximum entropy approach. 
Finally in section 5, the statistical basis for certain quantum mechanical concepts 
and results are discussed. 
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2. M a x i m u m  en t ropy  principle  and the Schr6dinger equation 

Beginning with the classical reduced Hamilton equation for a particle in a con- 
served field, Schr6dinger optimized the integral [20], 

I * =  J J J {(K2/2m)[(O~'/Ox)2 + ( O ~ / O Y ) 2  ff - (O~/OZ) 21 

+ ~c~(v - E)} dxdydz  (5) 

over the whole physical space to obtain his famous equation: 

(K2/2m)V2~u + (E - v)~ = o. (6) 

In this formulation, we observe that both the potential expectation and the square 
of a vector magnitude are minimized under the constraint of total probability con- 
servation. The vector is simply the gradient of the function ~,. For  a potential-free 
system, a minimized I* yields a probability density p = ~,*~, everywhere homoge- 
neous as expected. However, it is to be noted that such a purpose may likewise be 
achieved by maximizing Shannon's information. But then, we have to impose cer- 
tain necessary constraints, forcing our results to be the same as the solutions ofeq.  
(6) in case there is a potential. In other words, our task here is to find a set of  poten- 
tial-dependent functions {f} so as to yield the set of  solutions ofeq. (6). A detailed 
comparison is then possible. 

For  simplicity, consider a general one-dimensional problem. Instead of minimiz- 
ing I*, we choose to maximize the integral 

I ---~ f (--lk¢ 2 In ~u 2 + ~f(x)~u 2 + fl~U 2) dx (7) 
d T 

to obtain 

~u = U exp(c~f(x)), (8) 
where N and ~ are constants. Of course, the function set {f} is yet unknown.  
Direct substitution ofeq. (8) into eq. (6) gives, after operator factorization, 

(K2/2m)(D + o~F/2)(D - o~F/2)~ = 0, (9) 

where D = d /dx  and F(x) = df(x)/dx. It can be shown that d F / d x  is but the com- 
muta tor  DF - FD so that F(x) = .[(DF - FD)dx which may be interpreted as the 
limiting case of a linear combination of  infinitely many commutators  of D and F 
over the whole space x. Interestingly, it can be shown that the definite integral 
f~_ F(x)dx has an expectation which can be shown to be, using eq. (8), proportional 
to the information entropy of  the solution. 

3. Information entropy computation 

Based on the foregoing discussions, we believe that it is meaningful to compute 
entropies of  some simple systems. We first compute entropies for some states of  the 
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Table 1 
Information entropies Sp for the Schr6dinger hydrogenic orbitals. 

Orbital Sp 

Gadre This work 

ls 4.1447 4.1447 
2s 8.1109 8.1112 
2pz 7.2649 7.2652 
2px - 7.2650 
2py - 7.2651 
2p ~) 7.6968 - 

a) Entropy constructed from the function (Px + Py + P~) / 3. 

H atom for the purpose of comparing our results with those obtained by Gadre 
[11] for confirming our numerical evaluation of integrals. We then proceed to com- 
pute entropies for systems such as H~-, H2 and the Dirac hydrogen atom. Results 
are summarized in tables 1 and 2, figs. 1-3. For the ls state of the H atom, we have 
Sp = 4.1447 and the kinetic energy expectation ( T )  = 0.5 hartree. If both Sp and 
( T )  are considered as functions of/3, the exponent of the wave functions, the plots 
are shown in figs. 1 (a) and 1 (b), respectively. An increase in/3 corresponds to char- 
ging up the nucleus so that the "volume" of the electron cloud becomes smaller. 
Entropy is thus decreased just as in thermodynamics. On the other hand, the kinetic 
energy is expected to increase as the "volume" becomes smaller. 

We then come to the 2s orbital. We first point out that although all computa- 
tions were obtained through the use of machine-numerical integration, they can be 
evaluated analytically in closed forms by integration by parts. For the 2s state, 
again if we consider the entropy as a function of N2, the normalization constant, r', 
the position of the node, and/3, the exponent, we see that the entropy consists of 
three contributions, namely, the normalization, the node, and the exponent. 
Although the three may be inter-related, we can still roughly partition the entropy 
into three terms. Of particular interest to us is the term related to r'. A node in 
wave function means zero probability density at the node so that the distribution as 
a whole becomes less homogeneous. Roughly speaking, the introduction of a 
node gives rise to a negative entropy contribution of-6.2496. 

Table 2 
Information entropies of the Dirac H atom. 

my = 4-1/2 mj = 4-3/2 mla) E = 0 

ls 4.1448 4.1448 
2s 8.1111 8,1111 
2pl/2 7.6790 7.6970 
2pv 2 16.9128 7.5719 

a) ml = 0 means the linear combination of states with my = 4- ½. 
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Fig. 1. (a) 1 s informat ion entropy o f  the H atom vs. K. (b) l s  kinetic energy o f  H a tom vs. K. 

As for the Dirac H atom, most results are found almost identical with those of  
the corresponding Schr6dinger atom. This is definitely an indication of the rela- 
tively unimportance of the smaller components of  any such Dirac wave function, as 
far as the information entropy is concerned. However, for the 2p3/2 states with 
mj -- + 1/2, entropies are roughly twice as large. No  satisfactory explanation can 
be offered at present. Lastly, not much can be said about the H~- and H2 systems. 
For H +, the exact solution [21] has only 11 points corresponding to 11 values of  the 
nuclear separation R (fig. 2(a)). As for the approximate solutions (figs. 2(a) and 
2(b)), only very general qualitative behavior shows up in our computation. Further 
study is needed. 
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Fig. 2. (a) Informational entropy of H~- in the ground state [21,24]. (b) Kinetic energy of H + in its 
ground state. 

4. The hydrogen atom problem 

We are now ready for a closer examination of  the hydrogen atom problem in 
the light of  information theory. The potential is a function only of  the single vari- 
able r. Therefore, we expect the ground state probability density function P0 to be a 
function ofr. We have the information entropy of  the form 

I = - I po(r) In po(r) d r .  (10) 

Here, we do not intend to obtain P0 through the maximum entropy method. 
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Fig. 3. Informational entropy of H2 in its ground state [24]. 

Instead we only try to find the proper variational constraints that may lead us to 
the correct solution P0 which is obtained by any other means. With a knowledge 
about those constraints, can we modify them to obtain other solutions? To this end, 
the ls orbital is of the form 

k~tls ----- Ae -#r , (11) 

where the constants/3 and A can be determined by physics and normalization, 
respectively. If formulated through the maximum entropy approach, in order to 
obtain the result as in (11), we are involved with the variation 

I~ 6p0(ln ÷ c~ +/3r)r 2 dr = 0. (12)' p0 

As an afterthought, this could be rationalized as the requirement of maximizing 
the entropy under the constraints of having a finite and fixed radius ( r )  and of a 
conserved probability, or normalization condition. With the knowledge of (12), we 
are to obtain the probability distribution function for the 2s state. Our variational 
scheme then involved the integral equation 

J~ 5p0(ln + a' +/3r + rlh(r))r 2 dr = 0. (13) Pl 

This is because we are dealing with the same potential so that everything said 
before remains valid here. However, we are to include an additional term, rlh(r), for 
taking into account two criteria, namely, the peak number difference and the ortho- 
gonality requirement which will be discussed in more detail in a separate section. 
From eq. (13), our variational scheme gives 
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Pl (r) --- G(r) exp( -3 t r ) ,  (14) 

where G(r) = exp[-~h(r)] is a function to be determined• For the 2s state, one 
more peak along the r axis is required as we can see in a later section. Thus, we dif- 
ferentiate eq. (14), 

dp l ( r ) /dr  -- [ -3 'G(r )  + dG(r)/dr] e x p ( - f ' r ) .  (15) 

The function Pl must  possess exactly two relative extrema, one corresponding to 
the point  of  zero probability density, while the other, to the peak. It will do if G(r) is 
a quadratic function. Through a little algebraic manipulation, we arrive at 

pl(r) = Y ( r  - a) 2 exp ( -3 ' r ) .  (16) 

To determine the constant a, we propose to minimize the potential expectation 
again for reasons to be explained later. We find that the optimal choice of  a is 
a --- 2 /3 ' .  To fix/3 ~, we use the orthogonality relation with the 1 s state and find 
/3' = /3 /2 .  The determination of the normalization constant causes no problem and 
the derivation for the 2s state distribution function is completed. In fact, this proce- 
dure can be generalized to any ns state. We begin right away with the expression 

k~ns = Nn(al + a2r + . . .  + an-1 rn-2 + r n-l) exp(-~r) .  (17) 

The minimization of  (v )  and the orthogonalization relations lead to the matrix 
equation for the set of  coefficients ai, 

[ 1! 2! . .  (n - 1)! { . - 2  / al '~ n! '~ 

2! 3! .. n! ¢n-2 a2 ( n +  1)! 

" "  • __ ~ n - 1  -~- 0 ,  

• . 

( . - 1 ) !  .!  .. ( 2 . - 2 ) !  ¢.-2 ~,an-1] ( 2 n - 1 ) ! j  

(18) 
in which { is/3/n. Thus, instead of using the recursion formula, using eq. (18) we 
can obtain the whole set of  coefficients all at once. In fact, slight modifications 
allow us to determine also orbitals of other types such as np and nd, etc. 

Moreover,  it is found that almost exactly the same procedure can be applied 
also to the solutions of  the Dirac H atom. Auvil and Brown [22] once showed that  
the Dirac equation 

(%TrU - rn)k~ = O (19) 

can be put  in the form 

( l /p2) (d /dp) (pZ[dV+/dp])  + [(A/p) - (1/4) - (S±(S+ + a) /pE)V ± = 0 (20) 

through some operator algebra manipulation. Here V ± is related to ~ in a definite 
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way. Now, eq. (20) is exactly identical in form with the nonrelativistic Schr6dinger 
equation. We can therefore likewise obtain all solutions by the same maximum 
entropy variation approach once one solution is known. We omit the details here. 
Again, we can obtain all coefficients of  any solution without the use of a recursion 
formula. 

5. Discussion and assumption justifications 

First of all, we like to point  out that when applying the method of Lagrange mul- 
tipliers to a physical problem, the involved mathematics may allow distinct inter- 
pretations corresponding to the same formulation. To see this point, let us digress 
f rom the problem of  the most  probable distribution of N identical particles, a famil- 
iar problem in statistical thermodynamics. The usual formulation involves the 
maximization of entropy under the constraints of fixed number  of particles N and 
fixed total energy E. However, other interpretations which lead to the same mathe- 
matics exactly are possible. Actually, we can even follow those interpretations to 
prepare the system experimentally in three different ways, at least in principle. 
Namely,  we can fix N and E, allowing S to vary; we can likewise fix S and E, allow- 
ing N to vary; and lastly, we can also fix S and N, allowing E to vary. Turning 
back to the hydrogen atom problem, in obtaining solutions other than the ls state, 
we have used the criterion of minimizing the potential expectation in addition to 
maximizing the entropy. The use of such a criterion is thus justified in view of  the 
discussion just presented. Actually, the simultaneous extremalization of  both 
entropy and the potential expectation can be visualized through our computat ion.  
The fact that  the 2s state has a larger entropy than that of  the 1 s state is an indica- 
tion of more importance of potential energy expectation over that of entropy. 
While in obtaining the distribution of the 2s state, we used the same constraints for 
the 1 s state plus an additional term for satisfying the orthogonality and the peak 
number  criteria. As a result, however, both the potential energy expectation and 
the entropy are increased. But the latter is a quantity we maximize while the former 
is one we minimize, implying the former is optimized at a sacrifice of the latter 
which should have been lower in value because of the introduction of  the additional 
term which is a further constraint. Recall that by the virial theorem, (v )  = 2E 
while ( T )  = - E  for the hydrogen atom. Therefore the potential plays a more  
important  role as compared with entropy. 

In formulating the variational procedure, we have made use of  two postulates, 
namely, the peak number  criterion and the orthogonality relationship. By a peak 
here, we mean a relative maximum in the probability distribution. To be more  pre- 
cise, two relative maxima are to be called a single peak if they are not  separated 
by at least one min imum of the value zero. With this definition, we state our peak 
number  criterion as the following. Two distributions of  a quantum system in bound 
state differ in energy with certainty only if they differ in peak number.  Note  that  
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all experimental results are statistical in nature, for even if we have a true micro- 
scopic system at our disposal, we could never be certain in specifying the quantum 
state of the macroscopic instrument. Uncertainty is thus inevitable. For this rea- 
son, in interpreting a set of experimental data, one is forced to watch only the most 
remarkable differences and ignore all the minor ones. In other words, in studying 
a distribution of a quantum system, all differences in peak shape or in location are 
ignored since they can be specified only by using continuous parameters. It means 
that all such minor variations are by postulate either ignored, or treated as mix- 
tures, i.e., not as eigenstates of the system's Hamiltonian, but as those of the origi- 
nal somewhat perturbed in a completely random way. On a statistical basis, all 
such random perturbations add up to yield a zero expectation experimentally, 
allowing only the peak number change to be singled out for observation. Note that 
for a low lying quantum state, the peak number is but a simple integer. Thus, the 
argument just presented provides an experimental basis for the energy quantiza- 
tion concept. However, the peak number criterion alone is insufficient for establish- 
ing energy quantization. Under each statistical hypothesis, one particular 
probability distribution which has the representative energy of the whole ensemble 
is our only concern. Now, suppose that we have another distribution different in 
peak number. Does it have an energy value also the average of another ensemble? 
Here, we need the concept of orthogonality. For the statistical implication of this 
concept, we consider a discrete set of positive numbers, 

{Pi} = (Pl,P2,-..  ,Pn) (21) 

satisfying the condition 

~-~Pi = 1. (22) 
i 

Statistically more interesting is perhaps the set of square-root numbers, {p]/2) 
= (n 1/2 nl/2 '.~'1 , z-'2 , . . . ,  p~/2). In addition to the property of order-preserving, [ p]/2 [ 

rill2 >~ [ ~'k [ wheneverpi >~Pk, more interesting is the property that [ pi 1/2 [ >~Pi for all 
i, and the difference is the largest for [pi 1/2 [= 0.5 and the smallest forpi = 0 and 
Pk ---- 1. A nice symmetry of this difference set of numbers i to be noted. The use of 
the set of square-root values is advantageous in studying quantum effects, for it 
magnifies the discrepancy between a boundary and a regular point. Consider now 
two square-root functions g'i and ~Vk. The integral 

I (~i  - ~k) 2 d r  = 2 - 2Sik (23) 

is maximal if Sik vanishes. Thus, orthogonality guarantees a maximal differences 
between two square-root sets corresponding to two different distribution func- 
tions. Now, of course, in order to have a vanishing S~, a sign convention for the ff"s 
is to be introduced. It is done in the following way. A function gJi(x) remains of 
one sign as long as it does not cross the point zero. It takes a different sign as we 
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cross the zero point while changing x continuously. Note  that  in this way, all func- 
tions so constructed do satisfy the Schr6dinger equation. In our case, ~2s has a 
zero contaminat ion  of  ~Is due to orthogonality.  In addition, the minimizat ion of  
the potential energy expectation ensures a min imum total energy under  necessary 
constraints.  In fact, such arguments can also be extended to handle other quan tum 
systems and further  study along this line is under way in this laboratory.  

Finally, we like to point out  that  the concept of  information ent ropy is very ver- 
satile and can be used in many  ways. For  example, Gadre  and Bendale [11] sug- 
gested to maximize the sum of  $7 and S o for obtaining a ground state solution. They 
also investigated the upper and lower bounds of  atomic information entropies 
through a study of  the relationships between the kinetic energy and entropy [22]. 
For  obtaining approximate ground state solutions of  quantum systems, Arrachea  
et al. [18,19] considered the expansion of  the wave function in terms of  a suitable 
basis set { I J ) , J  = 1 , . . .  ,d}. This allows them to define a discrete entropy.  The 
underlying reasoning is that  the change for experimentally observing a part icular  
e igenvaluej  is assumed a priori the same as for any other valuej '  in the absence of  a 
potential. Then, one must  find different constraints for different basis sets if the 
characterist ic potential is given. This is actually an advantage of  using ent ropy con- 
cept for a mathemat ica l  analysis of  quantum systems. 
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